If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+6x-32=0
a = 12; b = 6; c = -32;
Δ = b2-4ac
Δ = 62-4·12·(-32)
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{393}}{2*12}=\frac{-6-2\sqrt{393}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{393}}{2*12}=\frac{-6+2\sqrt{393}}{24} $
| 2.83=5(3)^x | | -(q-23)=65 | | 14x-10=9x+85 | | 3x-2=10x+8 | | 7-13=8x | | 7(8^9x)=5 | | 2x+3=10x-15 | | 2x+3=10x-5 | | 2(x+3)=51 | | (5x+2)³=27 | | 5w+4/6+2w+3/2=4 | | 6*2^4x=21 | | 15^-9y=9 | | 2.8u=2.52 | | -4-3x=9 | | 4(5c-1)-2=15c+9 | | -3(t-2)+7t=6t-9 | | q+2/5=8 | | 0.5-4w=40 | | 2(b-4)=3+b | | -9y+15=-4/y | | -9=2+r | | -2(5y-1)-y=-4/y-3 | | 16r+23=11r+48 | | -8x+2(-2x-3)=-16-2x | | 27w+32=18w+13 | | X-(19-3x/2)=3 | | 12x+53=20x+13 | | 100°+60°+x=180° | | 100+60+x=180 | | -100u−8(-23.4u−27.33)=35u+1.06+49.9u | | 4(5y-2)=18y |